Bayesian Estimation in Hierarchical Models
نویسندگان
چکیده
Bayesian data analysis involves describing data by meaningful mathematical models, and allocating credibility to parameter values that are consistent with the data and with prior knowledge. The Bayesian approach is ideally suited for constructing hierarchical models, which are useful for data structures with multiple levels, such as data from individuals who are members of groups which in turn are in higher-level organizations. Hierarchical models have parameters that meaningfully describe the data at their multiple levels and connect information within and across levels. Bayesian methods are very flexible and straightforward for estimating parameters of complex hierarchical models (and simpler models too). We provide an introduction to the ideas of hierarchical models and to the Bayesian estimation of their parameters, illustrated with two extended examples. One example considers baseball batting averages of individual players grouped by fielding position. A second example uses a hierarchical extension of a cognitive process model to examine individual differences in attention allocation of people who have eating disorders. We conclude by discussing Bayesian model comparison as a case of hierarchical modeling.
منابع مشابه
Bayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملBayesian Estimation of Parameters in the Exponentiated Gumbel Distribution
Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کامل